synthesis and characterization of carbon nanotubes catalyzed by tio2 supported ni, co and ni-co nanoparticles via ccvd
نویسندگان
چکیده
monometallic and bimetallic ni and co catalytic nanoparticles supported on titanium dioxide (rutile phase) substrate were prepared by wet impregnation method. these nanoparicles were used as catalysts for synthesis of multiwalled carbon nanotubes (mwcnts) from acetylene decomposition at 700°c by the catalytic chemical vapor deposition (ccvd) technique. the nanomaterials (catalyst and cnts) were characterized by x-ray diffraction (xrd), scanning electron microscopy (sem) and raman spectroscopy. in this paper, the usage of tio2 powder as catalyst support was examined and the effect of applied catalyst type on characteristics of grown cnts was investigated. the results showed that the rutile phase of tio2 powder can be applied as a suitable catalyst support in cnt growth process. furthermore, it was observed that the cnts synthesized on ni-co bimetallic catalyst possess smaller average diameters, better quality and less amorphous carbon compared to ni and co monometallic catalyst types.
منابع مشابه
Synthesis and Characterization of Carbon Nanotubes Catalyzed by TiO2 Supported Ni, Co and Ni-Co Nanoparticles via CCVD
Monometallic and bimetallic Ni and Co catalytic nanoparticles supported on Titanium dioxide (rutile phase) substrate were prepared by wet impregnation method. These nanoparicles were used as catalysts for synthesis of multiwalled carbon nanotubes (MWCNTs) from acetylene decomposition at 700°C by the catalytic chemical vapor deposition (CCVD) technique. The nanomaterials (catalyst and CNTs) were...
متن کاملStructure and Magnetic Properties of Oxide Nanoparticles of Fe-Co-Ni Synthesized by Co-Precipitation Method
Oxide nanoparticles of Fe-Co-Ni were prepared in six different compositions by co-precipitation method. The as-synthesized nanoparticles were characterized by X-Ray Diffraction (XRD), Field Emission Scanning Electron microscope (FESEM), Fourier Transform Infrared (FT-IR) and Vibrating Sample Magnetometer (VSM). It was found that the nanoparticles had mean crystalline size of 30-55 nm and spher...
متن کاملRole of growth temperature in CVD synthesis of Carbon nanotubes from Ni-Co bimetallic catalysts
The effect of temperature variation on the growth of Carbon Nanotubes (CNTs) using Thermal Chemical Vapor Deposition (TCVD) is presented. Nickel and Cobalt (Ni-Co) thin films on Silicon (Si) substrates were used as catalysts in TCVD technique. Acetylene gas was used in CNTs growth process at the controlled temperature ranges from 850-1000 ̊ C. Catalysts and CNTs characterization was carried out ...
متن کاملRole of growth temperature in CVD synthesis of Carbon nanotubes from Ni-Co bimetallic catalysts
The effect of temperature variation on the growth of Carbon Nanotubes (CNTs) using Thermal Chemical Vapor Deposition (TCVD) is presented. Nickel and Cobalt (Ni-Co) thin films on Silicon (Si) substrates were used as catalysts in TCVD technique. Acetylene gas was used in CNTs growth process at the controlled temperature ranges from 850-1000 ̊ C. Catalysts and CNTs characterization was carried out ...
متن کاملCatalyst of Ni and Co dependencies for carbon nanotube synthesis by CVD method
In this research, the effect of catalyst type on the CNTs synthesis was investigated. The carbonnanotubes (CNTs) were produced on stainless steel substrates and two of catalyst with differentcharacteristics by using Thermal chemical vapor deposition (TCVD) method. The catalysts have theimportant role for the growth carbon nanotubes (CNTs). Acetylene gas (C2H2) diluted by NH3 wasused as the reac...
متن کاملSynthesis of MWCNTs Using Monometallic and Bimetallic Combinations of Fe, Co and Ni Catalysts Supported on Nanometric SiC via TCVD
Nanometric Carbid Silicon (SiC) supported monometallic and bimetallic catalysts containing Fe, Co, Ni transition metals were prepared by wet impregnation method. Multiwall carbon nanotubes (MWCNTs) were synthesized over the prepared catalysts from catalytic decomposition of acetylene at 850°C by thermal chemical vapor deposition (TCVD) technique. The synthesized nanomaterials (catalysts and CNT...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
journal of nanostructuresناشر: university of kashan
ISSN 2251-7871
دوره 3
شماره 3 2013
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023